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What is a community?
Network: vertices 

connected by edges

Community: subset of nodes on the network such that nodes in same community 
are more likely to be connected than nodes in different communities

Examples: division of social 
networks in groups, 
division of biological 
networks, routing in 

communication networks, 
etc...

Network of scientists working on 
networks (due to Mark Newman)

M.E.J. Newman, physics/0605087



Really, what is a community?
“I know it when I see it”?

Many algorithms proposed, such as Newman-
Girvan, 2004.  See L. Danon et. al. J Stat. P09008 
(2005) for a review of methods and performance.

How to quantify performance?  Clearly, we 
want the “best” algorithm.

One precise problem: graph partitioning
Divide a graph into two equal communities so as 

to minimize the number of links between 
communities.



Outline:
• The “four groups” test for performance: 

given a set of communities generate a 
random network to test an algorithm

• Bayesian inference problems: given a 
network, deduce the most likely community 
assignment

• Error-correcting codes, communication on a 
noisy channel, and belief propagation

• The BP and MFT algorithms for community 
detection and their performance

• Outlook



The “Four Groups” Test
• Start with N nodes divided into q different communities 

(typically, N=128, q=4)

• Connect nodes in the same community independently at 
random with probability

• Connect nodes in different communities with probability  

Newman, Girvan (2004)

pin

pout
Define average number of links to same or different community zin,out
Run a community detection algorithm on the given network.  See if its 

assignment of communities matches the initial assignment of communities!
This tests the accuracy of the algorithm.  Higher accuracy is better.  The problem 
is easier when      is large and        is small as the communities are better definedzin zout

Note that there is an arbitrariness in this definition: the communities can be 
“re-labeled” arbitrarily.  See Newman (2004) for precise definition of accuracy.



Inference problem: given graph, what is the 
probability that a given community 
assignment is correct?

Let     be the community assignment for node     whereqi 1 ≤ qi ≤ q

Bayesian method: probability that a given community assignment is 
correct is proportional to the a priori expectation for that 

assignment multiplied by the probability that the given community 
assignment produces the given graph

p({qi}) ∝ exp[
∑

<ij>

Jδqi,qj ] exp[
∑

i !=j

J ′δqi,qj /2]
Then, it may be shown that the probability of producing 
a given graph is equal to

For simplicity we ignore the a priori 
knowledge of exactly 128/4=32 nodes in 

each community and just use p({qi})

This gives a Potts model.  Compare to previous 
phenomenological derivation of Potts model (Reichardt 

and Bornholdt).  Freedom to re-label communities 
becomes Potts symmetry

J = log[(pin(1− pout))/((1− pin)pout)],
J ′ = log[(1− pin)/(1− pout)]

J>0, J’<0, ferro short-range couplings, 
AF long-range couplings

Maximum likelihood (most likely assignment  of communities) is 
ground state.  We do something slightly different.
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Error-correcting codes:
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Receiver can compute probability that any given message 
was sent.  Want to find most likely message.  This is a tough 

problem! (exponentially many possible messages)



Low-density parity check codes (LDPC)
Finding most likely message corresponds to finding 

the ground state of an 2-state Potts model on a 
graph with interactions between neighbors and 

magnetic fields.  Spin up=1, spin down=0.
The graph in LDPC has few loops (“low-density”)

Gallagher, 1963

Exact solution at non-zero temperature (noise) on a 
tree (no loops) with Bethe-Peierls technique:

i

j

i

j

Define        to be the probability 
the node i is in state 
pi(qi)

qi, 1 ≤ qi ≤ 2

Define         to be the probability 
the node i is in state     on the 

graph with the link from i to 
j removed

pij(qi)
qi

pi(r) ∝ exp[hi(r)]×
i,jn.n.∏

j

[exp(J)pji(r) + (1− pji(r))]

pij(r) ∝ exp[hi(r)]×
i,kn.n.∏

k !=j

[exp(J)pki(r) + (1− pki(r))]



Belief Propagation Algorithm: use the same 
equations on a graph with a low density of 
loops.  Not exact but a good approximation.

• Graph is highly connected (long-range links 
between all nodes).  Too many variables to 
use BP for these long-range links.

• Need a spontaneous symmetry breaking to 
get a group assignment.

Difficulties using BP for community detection:

Solution: treat long-range interactions using 
mean-field theory.  Treat short-range using BP.

hi(r) = J ′
∑

j "=i

pi(r)



Extracting information 
from the BP algorithm

• Rather than maximum-likelilhood (most probable 
assignment of communities for all nodes), we assign each 
node to the most likely community for that node.  (requires 
spontaneous symmetry breaking, alternative is to use 
correlation functions?)

• Maximum accuracy.  If by chance a given node connects to 
more nodes of a different community then it will be mis-
classified.  Maximum about 92% for 
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Can carry to further levels of a tree-like graph to bound the accuracy

zin = zout = 8, q = 3



Implementing the BP algorithm 
for community detection:

• Solve BP equations iteratively.  We chose the following: pick a random 
node and update belief.  Pick a random edge and update belief.  
Repeat.  Replace belief with weighted average of old belief and 
solution of BP equations.

• Possible failure mode: BP equations do not converge.  Diagnostic: 
beliefs oscillate.  Solution: more iterations, less change on iteration.  
Note that for error-correction various other methods are used to 
solve BP equations.

• Possible failure mode: BP equations do not break symmetry.  
Diagnostic: beliefs converge to symmetric solution.  Solution: lower 
temperature, larger J,J’.  Both failure modes can be detected by looking 
at beliefs

• Note: in practice, a range of values of J,J’ work, not just those from 
Bayesian estimate.

• Alternative algorithm: use MFT for all interactions.  Simpler, faster.

pi(r) → 0.75 ∗ pi(r) + 0.25 ∗ exp[hi(r)]
i,jn.n.∏

j

[exp(J)pji(r) + (1− pji(r))]



Results:
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100000 iterations, fixed constants
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Mean-field theory

Results for graphs with average coordination number 16 and 4.  Outperforms 
Newman-Girvan.  Seems to outperform all others too (see L. Danon).  Only 

algorithm with comparable performance is annealing (slow).

0.5 0.6 0.7 0.8 0.9 1
Fraction of Intra-community Links

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

Belief propagation algorithm (LANL)

Newman-Girvan algorithm



zi
in + zi

out = ki; zin/zout = const.

→ exp[Jijδqi,qj ]

More general inference problem: can use any starting
distribution of links.  Example:

Coupling constants depend on degrees

Solving Potts problem: belief 
propagation (or survey or mean-
field or loop equations (Chertkov 

2006))
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Conclusion
• Inference formulation of community detection

• Belief propagation is very accurate

• Time required: number of iterations=(number of 
nodes)*(iterations/node).  The required 
(iterations/node) scales as a phase ordering time.  
We guess that networks without spatial 
structure take time

• Application to clustering problems (M. B. 
Hastings, in preparation)

T ∝ N logα(N)


